youtube whats'up

Parkinson's breakthrough: Scientists one step closer to making a BRAIN out of stem cells

Date (2017-04-15)

SCIENTISTS are well on their way to turning stem cells into the most complex organ - the HUMAN BRAIN.

'Cradle of life' stem cells taken from skin samples were developed into three-dimensional brain-like organisms capable of exchanging signals between each other in a network.

The petri dish cells behave in a similar way to the brain cells which produce messenger dopamine from neurons - and scientists hope they will be able to use them to come up with a cure for Parkinson's.

Dopamine maintains smooth body movements, but when the neurons die off, tremors, rigid muscles and other Parkinson's disease symptoms begin to take over.

The new developments mean scientists can now use the cells to test what environmental factors like pollutants have on the onset of the disease and potentially find a cure.

Lead author Professor Jens Schwamborn said: "Our cell cultures open new doors to brain research.

"We can now use them to study the causes of Parkinson's disease and how it could possibly be effectively treated."

The stem cells can be transformed into any cell type of the human body but cannot produce a complete organism.

PHD student Anna Monzel developed a procedure to convert the stem cells into brain cells as part of her doctoral thesis.

She said: "I had to develop a special, precisely defined cocktail of growth factors and a certain treatment method for the stem cells, so that they would differentiate in the desired direction."

Prof Schwamborn from the Luxembourg Centre for Systems Biomedicine at Luxembourg University said: "Our subsequent examination of these artificial tissue samples revealed that various cell types characteristic of the midbrain had developed."

"The cells can transmit and process signals.

"We were even able to detect dopaminergic cells - just like in the midbrain."

The scientists say their petri dish study can also reduce the amount of animal testing in brain research.

Because cell cultures in the petri dishes are of human origin in some aspects they resemble human brains more than the brains of lab animals such as rats or mice.

Professor Schwamborn added: "There are also attractive economic opportunities in our approach.

"The production of tissue cultures is highly elaborate.

"In the scope of our spin-off Braingineering Technologies Sarl, we will be developing technologies by which we can provide the cultures for a fee to other labs or the pharmaceutical industry for their research."


Source : express